

SAGAR PUBLIC SCHOOL

SAMPLE PAPER-3

CLASS-IX

TIME ALLOWED: 3 HOURS

SUBJECT MATHS

MAX. MARKS: 80

General Instructions: Same as Sample Paper-1

- π is
 - (a) a rational number
- (b) an integer
- (c) an irrational number (d) a whole number
- The linear equation 3x 5y = 15 has
 - (a) no solution
 - (b) infinitely many solution
 - (c) a unique solution
 - (d) two solutions
- Two points having same abscissa but different ordinates lie on
 - (a) y-axis
- (b) x-axis
- (c) a line parallel to y-axis
- (d) a line parallel to x-axis
- To draw a histogram to represent the following frequency distribution:

Class interval	Frequency
5-10	6
10-15	12
15-25	10
25-45	8
45-75	15

The adjusted frequency for the class 25-45 is

- (a) 6
- (b) 5
- (c) 2
- (d)3
- The graph of the linear equation 2x + 3y = 6 is a line which meets the x-axis at the point
 - (a)(0,3)
- (b) (3, 0) (c) (2, 0)
- (d)(0,2)
- Euclid stated that all right angles are equal to each other in the form of
 - (a) A postulate
- (b) A proof
- (c) An axiom
- (d) A definition
- In the figure AB & CD are two straight lines intersecting at O, OP is ray. What is the measure of $\angle AOD$.

- (a) 128°
- (b) 40°
- (c) 140°
- (d) 100°
- The diagonals AC and BD of a rectangle ABCD intersect each other at P, If $\angle ABD = 50^{\circ}$, then ZDPC =
 - (a) 70°
- (b) 80°
- (c) 90°
- (d) 100°
- Zero of the zero polynomial is-
 - (a) every real number
 - (c) not defined
- (d)0
- 10. Express y in terms of x in the equation 5x-2y=7.

(a)
$$y = \frac{5x-7}{2}$$
 (b) $y = \frac{7-5x}{2}$ (c) $y = \frac{7x+5}{2}$ (d) $y = \frac{5x+7}{2}$

(b)
$$y = \frac{7-5x}{2}$$

(c)
$$y = \frac{7x + 5}{2}$$

(d)
$$y = \frac{5x + 7}{2}$$

- 11. ABCD is a Rhombus such that $\angle ACB = 40^{\circ}$, then $\angle ADB$ is
 - (a) 100°
- (b) 40°
- $(c) 60^{\circ}$
- (d) 50°
- 12. Diagonals of a quadrilateral ABCD bisect each other. If $\angle = 45^{\circ}$, then $\angle B =$
 - (a) 125°
- (b) 115° (c) 120°
- (d) 135°
- 13. In figure, if $\angle DAB = 60^{\circ}$, $\angle ABD = 50^{\circ}$, then $\angle ACB$ is equal to:

- (a) 80°
- (b) 60°
- (c) 50°
- (d) 70°
- 14. The simplest form of $0.5\overline{7}$ is
- (b) $\frac{57}{99}$ (c) $\frac{57}{100}$
- (d) $\frac{57}{90}$

IX/MATHS/SAMPLE PAPER

Section B

- The base of an isosceles triangle measures 24 e_{τη} and its area is 192cm². Find its perimeter.
 - In given figure, AOB is a diameter of the circle and C, D, E are any three points on the semi, circle. Find the value of ∠ACD+∠BED.

- 23. The outer diameter of a spherical shell is 10 cm and the inner diameter is 9 cm. Find the volume of the metal contained in the shell.
- In the given figure, two circles intersect at two points A and B. AD and AC are diameters to the two circles. Prove that B lies on the line segment DC.

If O is the centre of the circle, find the value of x in given figure:

25. Find whether the given equation has x = 2, y = 1 as a solution: x + y + 4 = 0.

OR

Find whether $(\sqrt{2}, 4\sqrt{2})$ is the solution of the equation x-2y=4 or not?

Section - C

- 26. Give there rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$
- 27. Find the value of k, if x-1 is a factor of $(px)^{-1}$ case: $p(x) = 2x^2 + kx + \sqrt{2}$

15. Which of the following point does not lie on the line y = 2x + 3?

 The congruence rule, by which the two triangles in the given figure are congruent is . ______.

(a) ASA (b) SAS (c) SSS (d) RHS

- 17. In a histogram, which of the following is proportional to the frequency of the corresponding class?
 - (a) Width of the rectangle
 - (b) Length of the rectangle
 - (c) Perimeter of the rectangle
 - (d) Area of the rectangle
- 18. The curved surface area of a cylinder and a cone is equal. If their base radius is same, then the ratio of the slant height of the height of the cylinder is

(a) 1:1 (b) 2:3 (c) 1:2 (d) 2:1

Assertion (A): The sides of a triangle are 3 cm, 4 cm and 5 cm. Its area is 6 cm².

Reason (R): If 2s = (a+b+c), where a, b, c are the sides of a triangle, then area $= \sqrt{(s-a)(s-b)(s-c)}$.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 20. Assertion (A): The point (1, 1) is the solution of x + y = 2.

Reason (R): Every point which satisfy the linear equation is a solution of the equation.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

28. From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are 14 cm, 10 cm and 6 cm. Find the area of the triangle.

OR

The triangular side walls of a flyover have used for advertisements. The sides of the walls are 13 m, 14 m and 15 m. The advertisement yield an earning of Rs 2000 per m² a year. A company hired one of its walls for 6 months. How much rent did it pay?

- 29. Find solutions of the form x = a, y = 0 and x = 0, y = b for the following pairs of equations. Do they have any common such solution?
- Show that the quadrilateral formed by joining the mid-points the sides of a rhombus, taken in order, form a rectangle.

In figure D is mid-Point of AB. P is on AC such that $PC = \frac{1}{2}AP$ and $DE \parallel BP$, then show that $AE = \frac{1}{2}AC$.

31. In Figure, LM is a line parallel to the y-axis at a distance of 3 units.

- (i) What are the coordinates of the points P, R and Q?
- (ii) What is the difference between the abscissa of the points L and M?

Section D

32. Find the values of a and b if $\frac{7+3\sqrt{5}}{3+\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}} = a+b\sqrt{5}.$

OR

If $p = \frac{3 - \sqrt{5}}{3 + \sqrt{5}}$ and $q = \frac{3 + \sqrt{5}}{3 + \sqrt{5}}$, find the value of $p^2 + a^2$.

- 33. In the adjoining figure, name:
 - (i) Six points
 - (ii) Five line segments
 - (iii) Four rays
 - (iv) Four lines
 - (v) Four collinear points

34. In the given figure, PQRS is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS).$

Fig., $AB \parallel CD$ and $CD \parallel EF$. Also, $EA \perp AB$. If $EA \perp AB$. $\angle BEF = 55^{\circ}$, find the values of x, y and z.

35. Find the values of a and b so that the polynomial $(x^4 + ax^3 - 7x^2 - 8x + b)$ is exactly divisible by (x+2) as well as (x+3).

Section - E

36. Read the following text carefully and answer the question that follow:

Ladli Scheme was launched by the Delhi Government in the year 2008. This scheme helps to make women strong and will empower a girl child. This scheme was started in 2008.

The expenses for the scheme are plotted in the following bar chart.

- (i) What are the total expenses from 2009 to 2011?
- (ii) What is the percentage of no of expenses in 2009-10 over the expenses in 2010-11?
- (iii) What is the percentage of minimum expenses over the maximum in the period 2007-2011?

OR

What is the difference of expenses in 2010-11 and the expenses in 2006-09?

IX/MATHS/SAMPLE PAPER

37. Read the following text carefully and answer the questions that follow:

A golf ball is spherical with about 300.50 dimples that help increase its velocity while in play. Golf balls are surface has 315 dimples (hemi-spherical) of radius 2 mm.

- (i) Find the surface area of one such dimple
- (ii) Find the volume of the material dug $_{0ut_{10}}$ make one dimple.
- (iii) Find the total surface area exposed to the surroundings.

OR

Find the volume of the golf ball.

38. Read the following text carefully and answer the questions that follow:

Harish and Deep were trying to prove a theorem For this they did the following

- (i) Draw a triangle ABC
- (ii) D and E are found as the mid points of AD and AC
- (iii) DE was joined and DE was extended to f^{\S} DE = EF
- (iv) FC was joined.

Questions:

- (i) $\triangle ADE$ and $\triangle EFC$ are congruent by which criteria?
- (ii) Show that $CF \parallel AB$.
- (iii) Show that CF = BD.

OR

Show that DF = BC and $DF \parallel BC$.