MATHEMATICS WORKSHEET 150424

CHAPTER 06 LINES AND ANGLES (ANSWERS)

SUBJECT: MATHEMATICS MAX. MARKS: 40 CLASS: IX DURATION: 1½ hrs

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

$\frac{SECTION-A}{\text{Questions 1 to 10 carry 1 mark each.}}$

1. In the given figure, POS is a line, then ∠OOR is

(a) 60°

Ans. (c) 80°

(b) 40°

(d) 20°

(d) 130°

2. In the given figure, ||m||n. Then value of x is

(a) 40°

Ans. (c) 140°

Given $1 \parallel m \parallel n$ and p is transversal.

$$\Rightarrow 1 \parallel n$$

Now, $40^{\circ} + x = 180^{\circ}$

(: Interior angles on the same side of the transversal are supplementary)

$$\Rightarrow$$
 x = 180° - 40° = 140°

Correct option is (c).

3. In the given figure, $\angle 1 = \angle 2$ then the measurements of $\angle 3$ and $\angle 4$ respectively are

(a) 58° , 61°

(b) 61° , 61°

(c) 119° , 61°

(d) 119°, 119°

Ans. (d) 119°, 119°

From the figure, $\angle 1 + \angle 2 + 58^{\circ} = 180^{\circ}$

(Angle sum property of triangle)

But given, $\angle 1 = \angle 2$

So, $\angle 1 + \angle 1 + 58^{\circ} = 180^{\circ}$

⇒ 2∠1 = 122°

So, $\angle 2 = 61^{\circ}$

Now, $\angle 3 = 58^{\circ} + \angle 2$

(*.* Exterior Angle Property)

 $=58^{\circ}+61^{\circ}=119^{\circ}$

Also, $\angle 4 = 58^{\circ} + \angle 1$

(*.* Exterior Angle Property)

 $=58^{\circ}+61^{\circ}=119^{\circ}$

Correct option is (d).

4. In the given figure, PQ || RS and $\angle ACS = 127^{\circ}$, $\angle BAC$ is

(a) 53°

(b) 77°

(c) 50°

(d) 107°

Ans. (b) 77°

Since PQ || RS, so

 $\Rightarrow \angle PAC = \angle ACS$

(*.* Alternate interior angles)

$$\Rightarrow \angle PAB + \angle BAC = 127^{\circ}$$

$$\Rightarrow 50^{\circ} + \angle BAC = 127^{\circ}$$

 $\Rightarrow \angle BAC = 77^{\circ}$

5. In the given figure, AB \parallel DE, then measure of \angle ACD is

(a) 43°

Ans. (c) 83°

(b) 40°

(c) 83°

(d) 97°

6. In the given figure, if the angles x and y are in the ratio 2:3, then angle z is

(a) straight angle Ans. (b) 144°

(b) 144°

(d) 90°

7. In the given figure, $\angle x = 20^{\circ}$, $\angle y = 160^{\circ}$, $\angle w = 105^{\circ}$, $\angle z = 75^{\circ}$.

Indicate the correct option.

- (a) ray m and ray n are opposite rays
- (c) ray p and ray n are opposite rays

Ans. (b) ray 1 and ray n are opposite rays

- (b) ray I and ray n are opposite rays
- (d) none of these
- 8. In the given figure, line 1 || line m || line n, line p and line q are transversals. Then, measurement of $\angle x$ is

(a) 57°

Ans. (d) 123°

(b) 43°

(d) 123°

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 9. Assertion (A): If a ray \overrightarrow{CD} stands on a line \overrightarrow{AB} , such that $\angle ACD = \angle BCD$, then $\angle ACD = 45^{\circ}$. **Reason (R):** If a ray \overrightarrow{CD} stands on a line \overrightarrow{AB} then $\angle ACD + \angle BCD = 180^{\circ}$. Ans. (d) Assertion (A) is false but reason (R) is true.
- 10. Assertion (A): If angles 'a' and 'b' form a linear pair of angles and $a = 40^{\circ}$, then $b = 140^{\circ}$. **Reason (R):** Sum of linear pair of angles is always 180°.

Ans. (a) Both A and R are true and R is the correct explanation of A.

 $\frac{\underline{SECTION} - \underline{B}}{\text{Questions 11 to 14 carry 2 marks each.}}$

11. In the given figure, two straight lines PQ and RS intersect each other at O. If $\angle POT = 75^{\circ}$. Find the value of a, b and c.

Ans. Given: RS is a straight line.

 $\angle ROP + \angle POT + \angle TOS = 180^{\circ}$

 $\therefore 4b + 75^{\circ} + b = 180^{\circ}$

(Linear pair axiom)

 $\Rightarrow 5b = 180^{\circ} - 75^{\circ} = 105^{\circ}$

$$\Rightarrow b = 21^{\circ}$$

∠QOS and ∠POR are vertically opposite angles. Therefore, their values are equal.

 $\Rightarrow a = 4b = 4 \times 21^{\circ} = 84^{\circ}$

 $\Rightarrow 2c + a = 180^{\circ}$

 $\Rightarrow 2c + 84^{\circ} = 180^{\circ}$

 $\Rightarrow 2c = 180^{\circ} - 84^{\circ} = 96^{\circ}$

 $\implies c = 48^{\circ}$

Hence, $a = 84^{\circ}$, $b = 21^{\circ}$ and $c = 48^{\circ}$.

12. In the given figure, if $l \parallel n$, find the value of x.

Ans. Draw a line 'n' through O such that $n \parallel l$ and $n \parallel m$.

As $l \parallel n$, OP is transversal.

$$\Rightarrow \angle 1 = 35^{\circ}$$

(Alternate interior angles)

Also, $n \parallel m$, OQ is transversal

$$\angle 2 = 40^{\circ}$$

(Alternate interior angles)

$$\therefore \angle POQ = \angle 1 + \angle 2 = 35^{\circ} + 40^{\circ} = 75^{\circ}$$

So,
$$x = \text{reflex} \angle POQ$$

$$= 360^{\circ} - \angle POQ = 360^{\circ} - 75^{\circ} = 285^{\circ}$$

13. In the given figure, if AB || CD, \angle APQ = 60° and \angle PRD = 137°, then find the value of x and y.

Ans. Given AB || CD

PQ is transversal

$$\Rightarrow \angle APQ = \angle PQR$$

(Alternate interior angles)

$$\Rightarrow 60^{\circ} = x$$

Again in $\triangle PQR$, exterior angle is $\angle PRD$

So,
$$\angle PRD = \angle PQR + \angle QPR$$

(: Exterior angle theorem)

 \Rightarrow 137° = x + y

$$\Rightarrow 137^{\circ} = 60^{\circ} + v$$

$$\Rightarrow v = 137^{\circ} - 60^{\circ} = 77^{\circ}$$

14. In the given figure, p is transversal to q and r. Given $q \parallel r$ and $\angle 1 = 75^{\circ}$. Find $\angle 6$ and $\angle 7$.

Ans. We have
$$\angle 1 = \angle 3$$

Now,
$$\angle 3 + \angle 6 = 180^{\circ}$$

supplementary.)

$$\Rightarrow \angle 6 = 180^{\circ} - \angle 3 = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

Also,
$$\angle 3 = \angle 7$$

(Corresponding angles)

(Given that $\angle 1 = 75^{\circ}$)

Thus,
$$\angle 6 = 105^{\circ}$$
 and $\angle 7 = 75^{\circ}$.

$\frac{\underline{SECTION-C}}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. In the given figure, AB and CD are two parallel lines intersected by a transversal EF. Bisector of interior angles BPQ and DQP intersect at R. Prove that $\angle PRQ = 90^{\circ}$

Ans. Given AB || CD and EF is transversal

$$\therefore \angle BPQ + \angle DQP = 180^{\circ}$$

(Interior angles on the same side of transversal is supplementary)

(Interior angles on the same side of transversal is

$$\Rightarrow \frac{1}{2} \angle BPQ + \frac{1}{2} \angle DQP = 180^{\circ} \times \frac{1}{2} = 90^{\circ} \qquad \dots (i)$$

Now, PR is the bisector of ∠BPQ

$$\Rightarrow \angle RPQ = \frac{1}{2} \angle BPQ$$
 and QR is the bisector $\angle DQP$.

$$\Rightarrow \angle PQR = \frac{1}{2} \angle DQP$$

From (i), we have
$$\angle RPQ + \angle PQR = 90^{\circ}$$

In
$$\triangle PQR$$
, $\angle RPQ + \angle PQR + \angle PRQ = 180^{\circ}$

(Angle sum property of a triangle)

$$\implies$$
 90° + \angle PRQ = 180°

$$\Rightarrow \angle PRQ = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

OR

In the given figure, EF || DQ and AB || CD. If \angle FEB = 64°, \angle PDC = 27°, then find \angle PDQ, \angle AED and ∠DEF.

Ans. Given: EF \parallel DQ and AB \parallel CD Now \angle AED = \angle CDP

 $\Rightarrow \angle AED = 27^{\circ}$

(Corresponding angles) (Given that \angle CDP = 27°)

(Linear pair axiom)

Also, $\angle AED + \angle DEF + \angle FEB = 180^{\circ}$

 \Rightarrow 27° + \angle DEF + 64° = 180°

 $\Rightarrow \angle DEF = 180^{\circ} - 91^{\circ} = 89^{\circ}$

Now, DQ \parallel EF

(Given)

PE is transversal

 $\therefore \angle PDQ = \angle DEF$ $\Rightarrow \angle PDQ = 89^{\circ}$

(Corresponding angles)

16. In the given figure, $n \parallel m$ and $p \parallel q$ of $\angle 1 = 75^\circ$, prove that $\angle 2 = \angle 1 + \frac{1}{3}$ of a right angle.

Ans. Given: $\angle 1 = 75^{\circ}$

Now, $m \parallel n$ and p is transversal

$$\Rightarrow \angle 1 + \angle 3 = 180^{\circ}$$

$$\Rightarrow$$
 75° + \angle 3 = 180°

$$\Rightarrow$$
 $\angle 3 = 180^{\circ} - 75^{\circ} = 105^{\circ}$

Now, $p \parallel q$ and m is transversal

$$\Rightarrow \angle 2 = \angle 3 = 105$$

(Corresponding angles)

(Co-interior angles)

$$=75^{\circ} + 30^{\circ} = 75^{\circ} + \frac{1}{3} \times 90^{\circ}$$

$$\angle 2 = \angle 1 + \frac{1}{3} \times \text{right angle.}$$

OR

In the given figure, $\angle 1 = 55^{\circ}$, $\angle 2 = 20^{\circ}$, $\angle 3 = 35^{\circ}$ and $\angle 4 = 145^{\circ}$. Prove that AB || CD.

Ans: We have,

$$\angle BMN = \angle 2 + \angle 3 = 20^{\circ} + 35^{\circ} = 55^{\circ} = \angle 1 = \angle ABM.$$

But these are the alternate angles formed by transversal BM on AB and MN.

So, by converse of alternate interior angles theorem.

$$AB \parallel MN$$
 ...(i)

Now,
$$\angle 3 + \angle 4 = 35^{\circ} + 145^{\circ} = 180^{\circ}$$

This, shows that sum of the co-interior angles is 180°.

From (i) and (ii), we have
$$AB \parallel CD$$
.

Hence proved.

17. In the figure, AB \parallel CE, CD \parallel EF. Find the value of x.

Ans. In ΔABC,

$$\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$$
 (Angle sum property of a triangle)

$$\Rightarrow$$
 40° + \angle 1 + 65° = 180°

$$\Rightarrow \angle 1 = 180^{\circ} - (40^{\circ} + 65^{\circ}) = 180^{\circ} - 105^{\circ} = 75^{\circ}$$

Now, given AB || CE, AC is transversal

$$\Rightarrow \angle 2 = \angle 1$$
 (Corresponding angle)

$$\Rightarrow$$
 $\angle 2 = 75^{\circ}$

Now,
$$65^{\circ} + \angle 3 + \angle 2 = 180^{\circ}$$
 (Linear pair axiom)

$$\Rightarrow$$
 65° + \angle 3 + 75° = 180°

$$\Rightarrow \angle 3 = 180^{\circ} - (65^{\circ} + 75^{\circ}) = 180^{\circ} - 140^{\circ}$$

$$\Rightarrow \angle 3 = 40^{\circ}$$

Again, given CD || EF

$$\Rightarrow$$
 AD || EF and EC is transversal

$$\Rightarrow$$
 $\angle CEF = \angle ECA$

$$\Rightarrow x = 65^{\circ} + \angle 3 = 65^{\circ} + 40^{\circ} = 105^{\circ}$$

Therefore, $x = 105^{\circ}$

SECTION - D

Questions 18 carry 5 marks.

- 18. (a) Prove that "If two lines intersect each other, the vertically opposite angles are equal." (4)
 - (b) In the given figure, if $\angle AOC = 50^{\circ}$ then find the measure of $(\angle AOD + \angle COB)$. (1)

Ans. (a) Given, To Prove and Figure – 2 marks

Proof – 2 marks

(b) Ray OA stands on line DOC

$$\angle AOD + \angle AOC = 180^{\circ}$$
 (Linear pair axiom)

$$\Rightarrow$$
 $\angle AOD + 50^{\circ} = 180^{\circ}$ (Given: $\angle AOC = 50^{\circ}$)

$$\Rightarrow \angle AOD = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

But
$$\angle COB = \angle AOD$$
 (Vertically opposite angles)

 $\Rightarrow \angle COB = 130^{\circ}$

 $\Rightarrow \angle AOD + \angle COB = 130^{\circ} + 130^{\circ} = 260^{\circ}$

SECTION - E (Case Study Based Questions)

Questions 19 to 20 carry 4 marks each.

19. Two parallel roads PQ and RS are at the center of the city. It was decided to put two huge lamp posts at point X and Y and a statue of Mahatma Gandhi to be placed at point M with lots of palm trees to be planted along the line AB which is parallel to both PQ and RS. The area around M is to be decorated with flowering plants and greenery. The angle ∠PXY is of 50° and angle ∠MYS is of 120°

Based on the above information answer the following questions:

- (a) What is the measure of $\angle XMB$?
- (b) What is the measure of the angle $\angle YMB$?
- (c) What is the measure of the reflex angle $\angle XMY$?
- (d) What is ratio between the angles ∠XMB and ∠YMB?
- Ans. (a) 50°
- (b) 60°
- (c) 250°
- (d) 5:6
- 20. Three book shelves AB, CD and EF, made up of wooden boards are fitted on the wall horizontal to the floor as shown in the figure. To give stability and a good look the two shelves AB and CD were joined by a wooden plank BE. Similarly CD and EF were joined by CE. The entire arrangement was such that the angles measured as follows: ∠ABE = 66°, ∠BEC = 36°, ∠CEF = 30°, ∠DCE = 150°

Based on the above information and the given figure answer the following questions:

- (a) What is the measure of angle $\angle BEF$?
- (b) What is the relation between AB and EF?
- (c) What is the relation between $\angle DCE$ and $\angle CEF$?
- (d) What can we conclude about CD and EF?

Ans. (a) 66°

- (b) AB | | EF
- (c) They are linear pairs
- (d) They are parallel to each other