

TRIANGLE AND ITS ANGLES

REVISION OF KEY CONCEPTS AND FORMULAE

1. A plane figure formed by three lines in a plane is called a triangle.

A triangle is generally denoted by the symbol Δ . In Δ *ABC*, *A*, *B* and *C* are known as vertices. A triangle *ABC* has six elements, namely, three sides *AB*, *BC* and *CA* and three angles $\angle A$, $\angle B$ and $\angle C$.

Equilateral Triangle: A triangle having all sides equal is called an equilateral triangle.

The measure of each angle of an equilateral triangle is 60°.

Isosceles Triangle: A triangle having two sides equal is called an isosceles triangle.

Angles opposite to equal sides of an isosceles triangle are equal. Sides opposite to equal angles of a triangle are equal.

Scalene triangle: A triangle, no two of whose sides are equal is called a scalene triangles.

All angles of a scalene triangle are distinct.

Right angled triangle: A triangle with one angle a right angle is called a right triangle or a right angled triangle.

B C D

- 2. The sum of the angles of a triangle is 180°.
- 3. If the side of a triangle is produced then the exterior angle so formed is equal to the sum of the two interior opposite angles. i.e. $\angle ACD = \angle CAB + \angle ABC$.

The exterior angle of a triangle is greater than each of the interior opposite angles.

4. In a \triangle *ABC*, if the bisectors of \angle *B* and \angle *C* intersect each other at *O*. Then,

$$\angle BOC = 90^{\circ} + \frac{1}{2} \angle A$$

Fig.11.4

5. In a \triangle ABC, the sides AB and AC are produced to the points P and Q respectively. If the bisectors of \angle PBC and \angle QCB intersect at O, then

105

$$\angle BOC = 90^{\circ} - \frac{1}{2} \angle A.$$

- **6.** In a \triangle *ABC*, if the bisectors $\angle B$ and $\angle C$ intersect at O and the bisectors of ext $\angle B$ and $ext \angle C$ meet at O', $\angle BOC + \angle BO'C = 180^{\circ}$ i.e. $\angle BOC$ and $\angle BO'C$ are supplementary.
- 7. In a \triangle ABC, the angle between the internal bisector of one base angle and the external bisector of other base angle is equal to one-half of the vertical angle i.e. $\angle E = \frac{1}{2} \angle A$ (see Fig. 11.5)

SOLVED EXAMPLES

MULTIPLE CHOICE

EXAMPLE 1 In a \triangle ABC, if $\angle A = \angle B + \angle C$, then \triangle ABC is

- (a) isosceles triangle
- (b) equilateral triangle (c) right triangle
- (d) none of these

Ans. (c)

SOLUTION We have,

$$\angle A = \angle B + \angle C \Rightarrow \angle A + \angle A = \angle A + \angle B + \angle C \Rightarrow 2 \angle A = 180^{\circ} \Rightarrow \angle A = 90^{\circ}$$

Hence, \triangle *ABC* is a right triangle.

EXAMPLE 2 In Fig. 11.6, BC || PQ, BP and CQ intersect at O. If $x + y = 80^{\circ}$ and $x - y = 55^{\circ}$. then z =

- (a) 80°
- (b) 55°
- (c) 90°
- (d) 100°

Ans. (d)

SOLUTION It is given that $BC \parallel PQ$ and transversal BP cuts them at Band P respectively.

$$\therefore$$
 $\angle CBP = \angle BPQ$

[Alternate angles]

$$\Rightarrow$$
 $\angle BPQ = x$

EXAMPLE 3 In Fig. 11.7, $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F =$

- (a) 180°
- (b) 360°
- (c) 540°
- (d) 90°

Ans. (b)

SOLUTION Using angle sum property in Δ 's ABC and DEF, we obtain

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 and $\angle D + \angle E + \angle F = 180^{\circ}$

$$\Rightarrow \qquad \angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 180^{\circ} + 180^{\circ} = 360^{\circ}$$

EXAMPLE 4 In Fig. 11.8, $\angle ACD = 120^{\circ}$ and $\angle ABC = 40^{\circ}$, then $\angle BAC =$

(a) 80° Ans. (a) (b) 60°

(c) 50° (d) 40°

SOLUTION In \triangle ABC, side BC is produced to D. Using exterior angle property, we obtain

$$\angle ACD = \angle ABC + \angle BAC$$

$$\Rightarrow$$
 120° = 40° + $\angle BAC \Rightarrow \angle BAC = 80°$

Fig.11.8 EXAMPLE 5 In Fig. 11.9, sides CB and BA of \triangle ABC are produced to D and E respectively. $\angle ABD = 105^{\circ}$ and $\angle CAE = 130^{\circ}$, then $\angle ACB =$

- (a) 50°
- (b) 55°
- (c) 75°
- (d) 130°

Fig.11.6

Ans. (b) SOLUTION We have, ∠CAE = 130°

$$\angle BAC = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

$$[\because \angle BAC + \angle CAE = 180^{\circ}]$$

Using exterior angle property in \triangle ABC, we obtain

$$\angle ABD = \angle BAC + \angle ACB$$

$$105^{\circ} = 50^{\circ} + \angle ACB \Rightarrow \angle ACB = 105^{\circ} - 50^{\circ} = 55^{\circ}$$

EXAMPLE 6 In a \triangle ABC, it is given that $\angle A: \angle B: C = 3:2:1$ and $\angle ACD = 90^\circ$. If BC is produced to E, then ZECD =

- (a) 60°
- (b) 30°
- (c) 50°
- (d) 40°

Ans. (a)

:

 \Rightarrow

SOLUTION We have, $\angle A : \angle B : \angle C = 1:2:3$

So, let
$$\angle A = 3x$$
, $\angle B = 2x$ and $\angle C = x$.

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$3x + 2x + 3x = 180^{\circ} \Rightarrow 6x = 180^{\circ} \Rightarrow x = 30^{\circ}$$

$$\angle A = 90^{\circ}$$
, $\angle B = 60^{\circ}$ and $\angle C = 30^{\circ}$

Fig.11.10

Using exterior angle property in \triangle ACE, we obtain

$$\angle ACE = \angle A + \angle B \Rightarrow \angle ACD + \angle ECD = 90^{\circ} + 60^{\circ} \Rightarrow 90^{\circ} + \angle ECD = 150^{\circ} \Rightarrow \angle ECD = 60^{\circ}$$

EXAMPLE 7 In Fig. 11.11, if the sides BC, CA and AB of \triangle ABC have been produced to D, E and F respectively, then $\angle BAE + \angle CBF + \angle ACD =$

- (a) 180°
- (b) 360°
- (c) 240°
- (d) 300°

Ans. (b)

SOLUTION Using exterior angle property in \triangle ABC, we obtain

$$\angle ACD = \angle A + \angle B$$
, $\angle CBF = \angle A + \angle C$ and, $\angle BAE = \angle B + \angle C$

$$\angle BAE + \angle CBF + \angle ACD = (\angle B + \angle C) + (\angle A + \angle C) + (\angle A + \angle B)$$

$$= 2 (\angle A + \angle B + \angle C) = 2 \times 180^{\circ} = 360^{\circ}$$

Fig.11.11

Fig.11.12

EXAMPLE 8 In Fig. 11.12, if PT is the bisector of $\angle QPR$ in $\triangle PQR$, $\angle PQR = 50^{\circ}$, $\angle PRQ = 30^{\circ}$ and $PS \perp QR$, then x =

- (a) 40°
- (b) 20°
- (c) 30°
- (d) 10°

Ans. (d)

SOLUTION Using angle sum property in ΔPQR , we obtain

$$\angle PQR + \angle PRQ + \angle RPQ = 180^{\circ}$$

$$\Rightarrow$$
 50° + 30° + $\angle RPQ = 180$ ° $\Rightarrow \angle RPQ = 100$ °

$$\angle QPT = \frac{1}{2} \angle RPQ = 50^{\circ} \quad [\because PT \text{ is bisector of } \angle QPR]$$

Using exterior angle property in $\triangle PQS$, we obtain

S, we obtain
$$CPS \rightarrow CPS = 40^{\circ}$$

EXAMPLE 9 In Fig.11.13, a+b=

- (b) 130°
- (c) 127°
- (d) 158°

SOLUTION Since ARB is a straight line.

$$\frac{x}{2} + 5\left(\frac{x}{2} - 1^{\circ}\right) + x + 9^{\circ} = 180^{\circ}$$

$$\Rightarrow 4x + 4^{\circ} = 180^{\circ} \Rightarrow 4x = 176^{\circ} \Rightarrow x = 44^{\circ}$$

Using exterior angle property in PQR, we obtain

$$\angle QRC = a + b$$

$$\frac{x}{2} + 5\left(\frac{x}{2} - 1^{\circ}\right) = a + b \Rightarrow a + b = 3x - 5^{\circ} \Rightarrow a + b = 3 \times 44^{\circ} - 5 = 127^{\circ}$$

Fig.11.13

ASSERTION-REASON

Each of the following examples contains STATEMENT-1 (Assertion) and STATEMENT-2 (Reason) has following four choices (a), (b), (c) and (d), only one of which is the correct answer. Mark the correct choice.

- (a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- (c) Statement-1 is true, Statement-2 is false.
- (d) Statement-1 is false, Statement-2 is true.

EXAMPLE 10 Statement-1 (Assertion): In Fig. 11.14, side BC of \triangle ABC is produced to D. If \angle ACD = 110°, then x = 40°.

Statement-2 (Reason):

If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

Ans. (a)

SOLUTION Statement-2 is the Exterior angle theorem. So, it is true. Using statement-2, we obtain

$$2x - 20^{\circ} + x + 10^{\circ} = 110^{\circ} \Rightarrow 3x = 120^{\circ} \Rightarrow x = 40^{\circ}$$

So, statement-1 is also true. Also, statement-2 is a correct explanation for statement-1. Hence, option (a) is correct.

EXAMPLE 11 Statement-1 (Assertion): In Fig. 11.15, if the bisectors of angles $\angle B$ and $\angle C$ of \triangle ABC meet at O, then \angle BOC = 140°

TRIANGLE AND ITS ANGLES

Statement-2 (Reason): If bisectors of angles B and C of a ABC meet at O, then $\angle BOC = 90^{\circ} + \frac{\angle A}{2}$

Ans. (d)

SOLUTION Statement-2 is true (See S.No. 4 on Page 96). Using statement-2, we obtain

$$\angle BOC = 90^{\circ} + \frac{1}{2} \times 50^{\circ} = 115^{\circ}$$

50, statement-1 is not true. Hence, option (d) is correct.

EXAMPLE 12 Statement-1 (Assertion): In a \triangle ABC, the bisectors of \angle B and \angle C meet a point O and the bisectors of $ext \angle B$ and $ext \angle C$ meet a point O'. If $\angle BOC = 135^{\circ}$, then $\angle BO'C = 45^{\circ}$

Statement-2 (Reason):

In a \triangle ABC, if the bisectors of \angle B and \angle C meet at a point O and the bisectors of ext \(\seta \) and ext \(\seta \) meet at a point O'. Then, ∠BOC and ∠BO'C are supplementary.

Ans. (a)

SOLUTION Statement-2 is true see S.No. 6 on page 96). Using statement-2, we have,

$$\angle BOC + \angle BO'C = 180^{\circ} \Rightarrow 135^{\circ} + \angle BO'C = 180^{\circ} \Rightarrow \angle BO'C = 45^{\circ}$$

So, statement-1 is true and statement-2 is a correct explanation for statement-1. Hence, option (a) is correct.

PRACTICE EXERCISES

MULTIPLE CHOICE

f the following:

	the correct alternative in e					
1.	If all the three angles of	a triangle are equal, then	each o	ne of them is equ	ial to	•
	(a) 90°	(b) 45°	(c)	60°	(a)	30°
2.	If two acute angles of a	right triangle are equal, th	en eac	h acute is equal t	0	
	(a) 30°	(b) 45°	(c)	60°	(a)	90°
3	An autorian analo of a tri	iangle is equal to 100° and	two in	terior opposite ar	ıgles	are equal. Each
٥.	of these angles is equal					
	•	(b) 80°	(c)	40°	(d)	50°
	(a) 75°	(B) 80			a tha	triangle is
4.	If one angle of a triangle	e is equal to the sum of the	e otner	two angles, the	i uie	triangle is
	(a) an isosceles triangle		(b)	an obtuse trian	gle	
	•		(d) a right triangle			
	(c) an equilateral trian	gle		_		
5.	Side BC of a triangle	ABC has been produced	to a p	point D such th	at ∠	$ACD = 120^{\circ}$. If
	1					

$$\angle B = \frac{1}{2} \angle A$$
, then $\angle A$ is equal to

(a) 80° (b) 75°

(a) 80°

(c) 60°

(d) 90°

6. In $\triangle ABC$, $\angle B = \angle C$ and ray AX bisects the exterior angle $\angle DAC$. If $\angle DAX = 70^{\circ}$, then

 $\angle ACB =$ (a) 35°

(b) 90°

(c) 70°

(d) 55°

7. In a triangle, an exterior angle at a vertex is 95° and its one of the interior opposite angle is 55°, then the measure of the other interior angle is (c) 40°

(a) 55°

(b) 85°

(d) 9.0°

MATHEMATICS-IX 8. If the sides of a triangle are produced in order, then the sum of the three exterior angles so formed is (a) 90° (c) 270° (d) 360° (b) 180° 9. In $\triangle ABC$, if $\angle A = 100^{\circ}$, AD bisects $\angle A$ and $AD \perp BC$. Then, $\angle B =$ (a) 50° (c) 40° (d) 100° (b) 90° 10. An exterior angle of a triangle is 108° and its interior opposite angles are in the ratio 4:5. The angles of the triangle are (a) 48°, 60°, 72° (d) 42°, 60°, 76° (c) 52°, 56°, 72° (b) 50°, 60°, 70° 11. In a $\triangle ABC$, if $\angle A = 60^{\circ}$, $\angle B = 80^{\circ}$ and the bisectors of $\angle B$ and $\angle C$ meet at O, then $\angle BOC = 10^{\circ}$ (a) 60° (c) 150° (d) 30° (b) 120° 12. Line segments AB and CD intersect at O such that $AC \parallel DB$. If $\angle CAB = 45^{\circ}$ and

13. In Fig. 11.16, if EC || AB, $\angle ECD = 70^{\circ}$ and $\angle BDO = 20^{\circ}$, then $\angle OBD$ is (a) 20° (b) 50° (c) 60° (d) 70°

- 15. If the measures of angles of a triangle are in the ratio of 3:4:5, what is the measure of the smallest angle of the triangle?
- (a) 25° (b) 30° (c) 45° (d) 60° **16.** In Fig. 11.18, for which value of x is $l_1 \parallel l_2$?
- (a) 37 (b) 43 (c) 45 (d) 47
- **17.** In Fig. 11.19, the value of *x* is (a) 65° (b) 80° (c) 95° (d) 120°

18. In Fig. 11.20, if $BP \parallel CQ$ and AC = BC, then the measure of x is (a) 20° (b) 25° (c) 30° (d) 35°

- 19. The base BC of triangle ABC is produced both ways and the measure of exterior angles formed are 94°and126°. Then, ∠BAC =
 - (a) 94°
- (b) 54°

- (c) 40°
- (d) 44°

20. In Fig. 11.21 if $AB \perp BC$, then x =

- (a) 18
- (b) 22

- (c) 25
- (d) 32

- 21. In Fig. 11.22, what is z in terms of x and y?
 - (a) x + y + 180
- (b) x + y 180
- (c) $180^{\circ} (x + y)$
- (d) $x + y + 360^{\circ}$

- 22. In Fig. 11.23, what is y in terms of x?

- (c) x
- (d) $\frac{3}{4}x$

23. In Fig. 11.24, what is the value of x?

Fig. 11.25

(a) 35

(b) 45

- (c) 50
- (d) 60
- 24. In Fig. 11.25, AB and CD are parallel lines and transversal EF intersects them at P and Qrespectively. If $\angle APR = 25^{\circ}$, $\angle RQC = 30^{\circ}$ and $\angle CQF = 65^{\circ}$, then
 - (a) $x = 55^{\circ}, y = 40^{\circ}$
- (b) $x = 50^{\circ}, y = 45^{\circ}$ (c) $x = 60^{\circ}, y = 35^{\circ}$ (d) $x = 35^{\circ}, y = 60^{\circ}$
- 25. If the bisectors of the acute angles of a right triangle meet at O, then the angle at O between the two bisectors is
 - (a) 45°
- (b) 95°

- (c) 135°
- (d) 90°
- 26. The bisects of exterior angles at B and C of $\triangle ABC$ meet at O. If $\angle A = x^{\circ}$, then $\angle BOC = x^{\circ}$
 - (a) $90^{\circ} + \frac{x^{\circ}}{2}$
- (b) $90^{\circ} \frac{x^{\circ}}{2}$
- (c) $180^{\circ} + \frac{x^{\circ}}{2}$ (d) $180^{\circ} \frac{x^{\circ}}{2}$
- 27. In a $\triangle ABC$, $\angle A = 50^{\circ}$ and BC is produced to a point D. If the bisectors of $\angle ABC$ and $\angle ACD$ meet at E, then $\angle E =$
 - (a) 25°
- (b) 50°

- (c) 100°
- 28. The side BC of $\triangle ABC$ is produced to a point D. The bisector of $\angle A$ meets side BC in L. If $\angle ABC = 30^{\circ}$ and $\angle ACD = 115^{\circ}$, then $\angle ALC =$
 - (a) 85°
- (b) $72\frac{1}{2}^{\circ}$

- (c) 145°
- (d) none of these

In Fig. 11.26, if $l_1 \parallel l_2$, the value of x is

(b) 30

(c) 45

(d) 60

30. In ΔRST (See Fig. 11.27), what is the value of x?

(a) 40

(b) 90°

(c) 80°

(d) 100

ASSERTION-REASON

Each of the following questions contains STATEMENT-1 (Assertion) and STATEMENT-2 (Reason) and has following four choices (a), (b), (c) and (d), only one of which is the correct answer. Mark the correct choice.

- (a) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- (c) Statement-1 is true, Statement-2 is false.
- (d) Statement-1 is false, Statement-2 is true.
- 31. Statement-1 (Assertion): In a $\triangle ABC$, if the bisectors of angles $\angle B$ and $\angle C$ meet at a point 0, then $\angle BOC$ is always an obtuse angle.

In a $\triangle ABC$, if the bisectors of angles $\angle B$ and $\angle C$ meet at a point 0, Statement-2 (Reason):

then $\angle BOC = 90^{\circ} + \frac{\angle A}{2}$.

32. Statement-1 (Assertion): In a Δ ABC, sides AB and AC are produced to P and Q respectively. If the bisectors of $\angle PBC$ and $\angle QCB$ intersect at O, then $\angle BOC$ is an acute angle.

In a \triangle ABC, sides AB and AC are produced to P and Q respectively. Statement-2 (Reason): If the bisectors of $\angle PBC$ and $\angle QCB$ intersect at O, then

 $\angle BOC = 90^{\circ} - \frac{A}{2}$.

33. Statement-1 (Assertion): In Fig. 11.28, side BC of \triangle ABC is produced to a point D such that the bisectors of $\angle ABC$ and $\angle ACD$ meet at a point E. If $\angle BAC = 80^\circ$, then $\angle BEC = 50^{\circ}$.

Statement-2 (Reason):

The angle between the internal bisector of one base angle and the external bisector of the other angle of a triangle is equal to one-half of the vertical angle.

34. Statement-1 (Assertion): In fig. 11.29, if $CP \parallel BQ$, then $\angle ACP = 140^{\circ}$.

Statement-2 (Reason): If two parallel lines are intersected by a transversal, then the corresponding angles are equal.

		97779	ANSWERS	9, 244(19)		
1. (a)	2. (b)	3. (d)	4. (d)	5. (a)	6. (c)	7. (c)
8. (d)	9. (c)	10. (a)	11. (b)	12. (b)	13. (b)	14. (b)
15. (c)	16. (d)	17. (d)	18. (c)	19. (c)	20. (a)	21. (b)
22. (a)	23. (d)	24. (a)	25. (c)	26. (b)	27. (a)	28. (b)
29. (c)	30. (d)	31. (a)	32. (a)	33. (d)	34. (b)	